Modeling Contact and Resolving Convergence Issues with Abaqus

Abaqus 2019
Course objectives
Upon completion of this course you will be able to:

- Define general contact and contact pairs
- Define appropriate surfaces (rigid or deformable)
- Model frictional contact
- Model large sliding between deformable bodies
- Resolve overclosures in interference fit problems
- Understand how nonlinear problems are solved in Abaqus
- Develop Abaqus models that will converge
- Identify modeling errors that cause models to experience convergence difficulties
- Recognize when a problem is too difficult or too ill-posed to be solved effectively

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus
Day 1

- **Lecture 1** Introduction to Nonlinear FEA
- **Lecture 2** Contact Workflow
 - **Workshop 1** Compression of a Rubber Seal
- **Lecture 3** Nonlinear FEA with Abaqus/Standard
 - **Workshop 2** Bolted Flange Analysis
- **Lecture 4** Why Abaqus Fails to Converge
 - **Workshop 3** Crimp Forming Analysis (Part 1)
Day 2

- Lecture 5 Surface based contact
- Lecture 6 Solution of Unstable Problems
 - Workshop 3 Crimp Forming Analysis (Part 2)
 - Workshop 4 Reinforced Plate Under Compressive Loads
- Lecture 7 Contact Properties
 - Workshop 5 Disk Forging Analysis
- Lecture 8 Convergence Problems: Element Behavior
 - Workshop 6 Element selection
Day 3

- Lecture 9 Convergence Problems: Materials
 - Workshop 7 Limit Load Analysis
 - Workshop 8 Ball Impact (optional)

- Lecture 10 Interference Fits
 - Workshop 9 Interference Fit Analysis

- Lecture 11 Convergence Problems: Constraints and Loading

- Lecture 12 Modeling Tips
 - Workshop 10 Snap Fit Analysis
 - Workshop 11 Analysis of a Radial Shaft Seal (optional)
Additional Material - Appendices

- Appendix 1 Node-to-Surface Formulation
- Appendix 2 Contact Elements
- Appendix 3 Dynamic Contact using Implicit Integration
- Appendix 4 Contact Logic and Diagnostics Tools
- Appendix 5 Additional Contact Features
- Appendix 6 Additional Contact Output
- Appendix 7 Advanced Friction Models
- Appendix 8 Contact Clearance
- Appendix 9 Geometric Smoothing
- Appendix 10 Resolving Overconstraints
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe, Simpack

* Included in extended licensing pool
SIMULIA’s Power of the Portfolio

<table>
<thead>
<tr>
<th>Software</th>
<th>Features</th>
<th>Applications</th>
</tr>
</thead>
</table>
| **Abaqus** | - Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization | - Realistic Human Simulation
- High Speed Crash & Impact
- Noise & Vibration |
| **Isight** | - Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments | - Material Calibration
- Workflow Automation
- Design Exploration |
| **Tosca** | - Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization | - Conceptual/Detailed Design
- Weight, Stiffness, Stress
- Pressure Loss Reduction |
| **fe-safe** | - Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics | - Safety Factors
- Creep-Fatigue Interaction
- Weld Fatigue |
| **Simpack** | - 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime) | - Complete System Analyses
- (Quasi-)Static, Dynamics, NVH
- Flex Bodies, Advanced Contact |
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning. Connect. Share. Spark Innovation.

©2013 Dassault Systèmes. All rights reserved.
SIMULIA TRAINING

http://www.3ds.com/products-services/simulia/services/training-courses/

SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American
› By Location
› By Course

International
› By Location
› By Course

Live Online Training
› Full Schedule
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2018

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
Revision Status

Lecture 1	11/18	Updated for Abaqus 2019
Lecture 2	11/18	Updated for Abaqus 2019
Lecture 3	11/18	Updated for Abaqus 2019
Lecture 4	11/18	Updated for Abaqus 2019
Lecture 5	11/18	Updated for Abaqus 2019
Lecture 6	11/18	Updated for Abaqus 2019
Lecture 7	11/18	Updated for Abaqus 2019
Lecture 8	11/18	Updated for Abaqus 2019
Lecture 9	11/18	Updated for Abaqus 2019
Lecture 10	11/18	Updated for Abaqus 2019
Lecture 11	11/18	Updated for Abaqus 2019
Lecture 12	11/18	Updated for Abaqus 2019
Appendix 1	11/18	Updated for Abaqus 2019
Appendix 2	11/18	Updated for Abaqus 2019
Appendix 3	11/18	Updated for Abaqus 2019
Appendix 4	11/18	Updated for Abaqus 2019
Appendix 5	11/18	Updated for Abaqus 2019
Appendix 6	11/18	Updated for Abaqus 2019
Appendix 7	11/18	Updated for Abaqus 2019
Appendix 8	11/18	Updated for Abaqus 2019
Appendix 9	11/18	Updated for Abaqus 2019
Appendix 10	11/18	Updated for Abaqus 2019
Workshop 1	11/18	Updated for Abaqus 2019
Workshop 2	11/18	Updated for Abaqus 2019
Workshop 3	11/18	Updated for Abaqus 2019
Workshop 4	11/18	Updated for Abaqus 2019
Workshop 5	11/18	Updated for Abaqus 2019
Workshop 6	11/18	Updated for Abaqus 2019
Workshop 7	11/18	Updated for Abaqus 2019
Workshop 8	11/18	Updated for Abaqus 2019
Workshop 9	11/18	Updated for Abaqus 2019
Workshop 10	11/18	Updated for Abaqus 2019
Workshop 11	11/18	Updated for Abaqus 2019
Lesson 1: Introduction to Nonlinear FEA

Lesson content:

- What is Convergence?
- When is a Problem Nonlinear?
- Properties of Linear Problems in Mechanics
- Properties of Nonlinear Problems in Mechanics
- Numerical Techniques for Solving Nonlinear Problems

1 hour
Lesson content:

- Defining General Contact
- Defining Contact Pairs
- Defining Surfaces for Contact Pairs
- Workshop Preliminaries
- Workshop 1: Compression of a Rubber Seal (IA)
- Workshop 1: Compression of a Rubber Seal (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

1.5 hours
Lesson 3: Nonlinear FEA with Abaqus/Standard

Lesson content:

- Nonlinear Solution Methods
- Abaqus/Standard Convergence Criteria: An Overview
- Automatic Time Incrementation
- Contact Convergence
- Workshop 2: Bolted Flange Analysis (IA)
- Workshop 2: Bolted Flange Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

1.5 hours
Lesson 4: Why Abaqus Fails to Converge

Lesson content:

- The Basic Problems
- Understanding the Warning Messages
- Helping Abaqus Find a Converged Solution
- Workshop 3 (Part 1): Crimp Forming Analysis (IA)
- Workshop 3 (Part 1): Crimp Forming Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

2 hours
Lesson 5: Surface-based Contact

Lesson content:

- Contact Formulations
- Contact Discretization
- Contact Enforcement Methods
- Relative Sliding Between Bodies
- Contact Output
- Summary

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 6: Solution of Unstable Problems

Lesson content:

- Unstable Quasi-Static Problems
- Globally Unstable Problems
- Stabilization of Local Instabilities
- Symptoms of Local Instability
- Automated Viscous Damping
- Implicit Dynamics
- Examples
- Stabilization of Initial Rigid Body Motion
- Workshop 3 (Part 2): Crimp Forming Analysis (IA)
- Workshop 3 (Part 2): Crimp Forming Analysis (KW)
- Workshop 4: Reinforced Plate Under Compressive Loads (IA)
- Workshop 4: Reinforced Plate Under Compressive Loads (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

2.5 hours
Lesson 7: Contact Properties

Lesson content:

- Pressure-Overclosure Models
- Friction Models
- Friction Enforcement
- Workshop 5: Disk Forging Analysis (IA)
- Workshop 5: Disk Forging Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

2 hours
Lesson 8: Convergence Problems: Element Behavior

Lesson content:

- Hourglassing in Reduced-Integration Elements
- Checkerboarding
- Ill-Conditioning
- Workshop 6: Element Selection (IA)
- Workshop 6: Element Selection (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 9: Convergence Problems: Materials

Lesson content:

- Large Strains and Linear Elasticity
- Unstable Material Behavior
- Example: Plate with a Hole
- Unsymmetric Material Stiffness
- Example: Concrete Slump Test
- Workshop 7: Limit Load Analysis (IA)
- Workshop 7: Limit Load Analysis (KW)
- Workshop 8: Ball Impact (IA)
- Workshop 8: Ball Impact (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

1.5 hours
Lesson 10: Interference Fits

Lesson content:

- Initial Overclosure
- Strain-free Adjustments
- Interference Fit Problems
- Interference Fit Techniques for General Contact
- Interference Fit Techniques for Contact Pairs
- Interference Fit Example
- Geometric Smoothing for Curved Surfaces
- Workshop 9: Interference Fit Analysis (IA)
- Workshop 9: Interference Fit Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 11: Convergence Problems: Constraints & Loading

Lesson content:

- General Remarks
- Overconstraints Detected during Model Processing
- Overconstraints Detected during Analysis Execution
- Controlling the Overconstraint Checks
- Nonconservative Loads
Lesson 12: Modeling Tips

Lesson content:

- Initial Rigid Body Motion
- Overconstraint
- Contact with Quadratic Elements
- Unsymmetric Matrices in Finite-Sliding Problems
- Dynamic Instabilities
- Modeling Corners and Edges
- Contact and Convergence Guidelines
- Workshop 10: Snap Fit Analysis (IA)
- Workshop 10: Snap Fit Analysis (KW)
- Workshop 11: Analysis of a Radial Shaft Seal (IA)
- Workshop 11: Analysis of a Radial Shaft Seal (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Appendix 1: Node-to-Surface Formulation

Appendix content:

- Discretization
- Finite Sliding: Surface Considerations
- Small Sliding Characteristics
- Small Sliding: Local Contact Plane
- Small Sliding: Surface Considerations
Appendix 2: Contact Elements

Appendix content:

- Surface-Based vs. Contact Element Approach
- Contact Elements
- Contact Element Output
- Contact Element Visualization
Appendix 3: Dynamic Contact using Implicit Integration

Appendix content:

- Time Integration Issues
- Implicit Dynamics
- Damping
- Impact Problems
Appendix 4: Contact Logic and Diagnostics Tools

Appendix content:

- Newton Method
- The Contact Algorithm
- Contact Diagnostics: Visual
- Contact Diagnostics: Text

2 hours
Appendix 5: Additional Features

Appendix content:

- Beam Contact
- Tie Constraints
- Rigid Bodies and Contact
- Analytical Rigid Surfaces
- Pre-Tensioning of Cross-Sections
- Pressure Penetration
- Contact in Linear Perturbation Procedures
- Initial Stresses for Contact
Appendix 6: Additional Contact Output

Appendix content:

- Additional Field Output
- Master and Slave Surfaces
- Error Indicators
- Contact Area and Units
- Contact Opening
- Self Contact
- Nodal Contact Output Requests
- Whole Surface Output
- Whole Model Output

2 hours
Appendix 7: Advanced Friction Models

Appendix content:

- Anisotropic Friction
- Surface Slip Directions
- Nonlinear Friction Coefficients
- Kinetic Friction Model
- User Subroutine FRIC_COEF
Appendix 8: Contact Clearance

Appendix content:

- Precise Specification of Clearances
- Initial Clearance with General Contact
- Initial Clearance with Contact Pairs
Appendix 9: Geometric Smoothing

Appendix content:

- Geometric Smoothing for Curved Surfaces
- Applicability
- Examples
- General Contact
- Contact Pairs

2 hours
Appendix 10: Resolving Overconstraints

Appendix content:

- Four Bar Linkage Example
- Constraint Chains
- Removing Overconstraints